Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 96(12): e0016821, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35638821

RESUMO

Positive-strand RNA viruses build large viral replication organelles (VROs) with the help of coopted host factors. Previous works on tomato bushy stunt virus (TBSV) showed that the p33 replication protein subverts the actin cytoskeleton by sequestering the actin depolymerization factor, cofilin, to reduce actin filament disassembly and stabilize the actin filaments. Then, TBSV utilizes the stable actin filaments as "trafficking highways" to deliver proviral host factors into the protective VROs. In this work, we show that the cellular intrinsic restriction factors (CIRFs) also use the actin network to reach VROs and inhibit viral replication. Disruption of the actin filaments by expression of the Legionella RavK protease inhibited the recruitment of plant CIRFs, including the CypA-like Roc1 and Roc2 cyclophilins, and the antiviral DDX17-like RH30 DEAD box helicase into VROs. Conversely, temperature-sensitive actin and cofilin mutant yeasts with stabilized actin filaments reduced the levels of copurified CIRFs, including cyclophilins Cpr1, CypA, Cyp40-like Cpr7, cochaperones Sgt2, the Hop-like Sti1, and the RH30 helicase in viral replicase preparations. Dependence of the recruitment of both proviral and antiviral host factors into VROs on the actin network suggests that there is a race going on between TBSV and its host to exploit the actin network and ultimately to gain the upper hand during infection. We propose that, in the highly susceptible plants, tombusviruses efficiently subvert the actin network for rapid delivery of proviral host factors into VROs and ultimately overcome host restriction factors via winning the recruitment race and overwhelming cellular defenses. IMPORTANCE Replication of positive-strand RNA viruses is affected by the recruitment of host components, which provide either proviral or antiviral functions during virus invasion of infected cells. The delivery of these host factors into the viral replication organelles (VROs), which represent the sites of viral RNA replication, depends on the cellular actin network. Using TBSV, we uncover a race between the virus and its host with the actin network as the central player. We find that in susceptible plants, tombusviruses exploit the actin network for rapid delivery of proviral host factors into VROs and ultimately overcome host restriction factors. In summary, this work demonstrates that the actin network plays a major role in determining the outcome of viral infections in plants.


Assuntos
Actinas , Fatores de Restrição Antivirais , Biogênese de Organelas , Tombusvirus , Replicação Viral , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Proteínas de Transporte/metabolismo , Ciclofilinas/metabolismo , Vírus de DNA/genética , RNA Viral/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/virologia , Proteínas de Saccharomyces cerevisiae , Tombusvirus/genética , Tombusvirus/fisiologia , Proteínas Virais/metabolismo
2.
Virology ; 563: 1-19, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34399236

RESUMO

To further our understanding of the pro-viral roles of the host cytosolic heat shock protein 70 (Hsp70) family, we chose the conserved Arabidopsis thaliana Hsp70-2 and the unique Erd2 (early response to dehydration 2), which contain Hsp70 domains. Based on in vitro studies with purified components, we show that AtHsp70-2 and AtErd2 perform pro-viral functions equivalent to that of the yeast Ssa1 Hsp70. These functions include activation of the tombusvirus RdRp, and stimulation of replicase assembly. Yeast-based complementation studies demonstrate that AtHsp70-2 or AtErd2 are present in the purified tombusvirus replicase. RNA silencing and over-expression studies in Nicotiana benthamiana suggest that both Hsp70-2 and Erd2 are co-opted by tomato bushy stunt virus (TBSV). Moreover, we used allosteric inhibitors of Hsp70s to inhibit replication of TBSV and related plant viruses in plants. Altogether, interfering with the functions of the co-opted Hsp70s could be an effective antiviral approach against tombusviruses in plants.


Assuntos
Arabidopsis/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Tombusvirus/fisiologia , Replicação Viral/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Benzotiazóis/farmacologia , Regulação da Expressão Gênica de Plantas/imunologia , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Regulação Viral da Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , Teste de Complementação Genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Compostos de Piridínio/farmacologia , RNA Viral/fisiologia , Nicotiana/metabolismo , Nicotiana/virologia , Técnicas do Sistema de Duplo-Híbrido , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
3.
PLoS Pathog ; 17(6): e1009680, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34161398

RESUMO

Positive-strand (+)RNA viruses take advantage of the host cells by subverting a long list of host protein factors and transport vesicles and cellular organelles to build membranous viral replication organelles (VROs) that support robust RNA replication. How RNA viruses accomplish major recruitment tasks of a large number of cellular proteins are intensively studied. In case of tomato bushy stunt virus (TBSV), a single viral replication protein, named p33, carries out most of the recruitment duties. Yet, it is currently unknown how the viral p33 replication protein, which is membrane associated, is capable of the rapid and efficient recruitment of numerous cytosolic host proteins to facilitate the formation of large VROs. In this paper, we show that, TBSV p33 molecules do not recruit each cytosolic host factor one-by-one into VROs, but p33 targets a cytosolic protein interaction hub, namely Rpn11, which interacts with numerous other cytosolic proteins. The highly conserved Rpn11, called POH1 in humans, is the metalloprotease subunit of the proteasome, which couples deubiquitination and degradation of proteasome substrates. However, TBSV takes advantage of a noncanonical function of Rpn11 by exploiting Rpn11's interaction with highly abundant cytosolic proteins and the actin network. We provide supporting evidence that the co-opted Rpn11 in coordination with the subverted actin network is used for delivering cytosolic proteins, such as glycolytic and fermentation enzymes, which are readily subverted into VROs to produce ATP locally in support of VRO formation, viral replicase complex assembly and viral RNA replication. Using several approaches, including knockdown of Rpn11 level, sequestering Rpn11 from the cytosol into the nucleus in plants or temperature-sensitive mutation in Rpn11 in yeast, we show the inhibition of recruitment of glycolytic and fermentation enzymes into VROs. The Rpn11-assisted recruitment of the cytosolic enzymes by p33, however, also requires the combined and coordinated role of the subverted actin network. Accordingly, stabilization of the actin filaments by expression of the Legionella VipA effector in yeast and plant, or via a mutation of ACT1 in yeast resulted in more efficient and rapid recruitment of Rpn11 and the selected glycolytic and fermentation enzymes into VROs. On the contrary, destruction of the actin filaments via expression of the Legionella RavK effector led to poor recruitment of Rpn11 and glycolytic and fermentation enzymes. Finally, we confirmed the key roles of Rpn11 and the actin filaments in situ ATP production within TBSV VROs via using a FRET-based ATP-biosensor. The novel emerging theme is that TBSV targets Rpn11 cytosolic protein interaction hub driven by the p33 replication protein and aided by the subverted actin filaments to deliver several co-opted cytosolic pro-viral factors for robust replication within VROs.


Assuntos
Citoesqueleto de Actina/metabolismo , Endopeptidases/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Tombusvirus/fisiologia , Replicação Viral/fisiologia , Citosol/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo
4.
Virology ; 559: 15-29, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33799077

RESUMO

Positive-strand RNA viruses build viral replication organelles (VROs) with the help of co-opted host factors. The energy requirement of intensive viral replication processes is less understood. Previous studies on tomato bushy stunt virus (TBSV) showed that tombusviruses hijack two ATP-producing glycolytic enzymes to produce ATP locally within VROs. In this work, we performed a cDNA library screen with Arabidopsis thaliana proteins and the TBSV p33 replication protein. The p33 - plant interactome contained highly conserved glycolytic proteins. We find that the glycolytic Hxk2 hexokinase, Eno2 phosphopyruvate hydratase and Fba1 fructose 1,6-bisphosphate aldolase are critical for TBSV replication in yeast or in a cell-free replicase reconstitution assay. The recruitment of Fba1 is important for the local production of ATP within VROs. Altogether, our data support the model that TBSV recruits and compartmentalizes possibly most members of the glycolytic pathway. This might allow TBSV to avoid competition with the host for ATP.


Assuntos
Trifosfato de Adenosina/metabolismo , Glicólise , Nicotiana/enzimologia , Tombusvirus/fisiologia , Replicação Viral/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Interações entre Hospedeiro e Microrganismos , Nicotiana/metabolismo , Nicotiana/virologia , Tombusvirus/genética , Tombusvirus/metabolismo
5.
PLoS Pathog ; 15(10): e1008092, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31648290

RESUMO

The viral replication proteins of plus-stranded RNA viruses orchestrate the biogenesis of the large viral replication compartments, including the numerous viral replicase complexes, which represent the sites of viral RNA replication. The formation and operation of these virus-driven structures require subversion of numerous cellular proteins, membrane deformation, membrane proliferation, changes in lipid composition of the hijacked cellular membranes and intensive viral RNA synthesis. These virus-driven processes require plentiful ATP and molecular building blocks produced at the sites of replication or delivered there. To obtain the necessary resources from the infected cells, tomato bushy stunt virus (TBSV) rewires cellular metabolic pathways by co-opting aerobic glycolytic enzymes to produce ATP molecules within the replication compartment and enhance virus production. However, aerobic glycolysis requires the replenishing of the NAD+ pool. In this paper, we demonstrate the efficient recruitment of pyruvate decarboxylase (Pdc1) and alcohol dehydrogenase (Adh1) fermentation enzymes into the viral replication compartment. Depletion of Pdc1 in combination with deletion of the homologous PDC5 in yeast or knockdown of Pdc1 and Adh1 in plants reduced the efficiency of tombusvirus replication. Complementation approach revealed that the enzymatically functional Pdc1 is required to support tombusvirus replication. Measurements with an ATP biosensor revealed that both Pdc1 and Adh1 enzymes are required for efficient generation of ATP within the viral replication compartment. In vitro reconstitution experiments with the viral replicase show the pro-viral function of Pdc1 during the assembly of the viral replicase and the activation of the viral p92 RdRp, both of which require the co-opted ATP-driven Hsp70 protein chaperone. We propose that compartmentalization of the co-opted fermentation pathway in the tombusviral replication compartment benefits the virus by allowing for the rapid production of ATP locally, including replenishing of the regulatory NAD+ pool by the fermentation pathway. The compartmentalized production of NAD+ and ATP facilitates their efficient use by the co-opted ATP-dependent host factors to support robust tombusvirus replication. We propose that compartmentalization of the fermentation pathway gives an evolutionary advantage for tombusviruses to replicate rapidly to speed ahead of antiviral responses of the hosts and to outcompete other pathogenic viruses. We also show the dependence of turnip crinkle virus, bamboo mosaic virus, tobacco mosaic virus and the insect-infecting Flock House virus on the fermentation pathway, suggesting that a broad range of viruses might induce this pathway to support rapid replication.


Assuntos
Álcool Desidrogenase/metabolismo , Piruvato Descarboxilase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/virologia , Tombusvirus/crescimento & desenvolvimento , Replicação Viral/fisiologia , Trifosfato de Adenosina/biossíntese , Fermentação/fisiologia , Glicólise/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , NAD/metabolismo , RNA Viral/biossíntese , Saccharomyces cerevisiae/metabolismo , Nicotiana/virologia , Tombusvirus/genética , Replicação Viral/genética
6.
Virology ; 484: 265-275, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26135843

RESUMO

Mono- and multi-ubiquitination alters the functions and subcellular localization of many cellular and viral proteins. Viruses can co-opt or actively manipulate the ubiquitin network to support viral processes or suppress innate immunity. Using yeast (Saccharomyces cerevisiae) model host, we show that the yeast Rad6p (radiation sensitive 6) E2 ubiquitin-conjugating enzyme and its plant ortholog, AtUbc2, interact with two tombusviral replication proteins and these E2 ubiquitin-conjugating enzymes could be co-purified with the tombusvirus replicase. We demonstrate that TBSV RNA replication and the mono- and bi-ubiquitination level of p33 is decreased in rad6Δ yeast. However, plasmid-based expression of AtUbc2p could complement both defects in rad6Δ yeast. Knockdown of UBC2 expression in plants also decreases tombusvirus accumulation and reduces symptom severity, suggesting that Ubc2p is critical for virus replication in plants. We provide evidence that Rad6p is involved in promoting the subversion of Vps23p and Vps4p ESCRT proteins for viral replicase complex assembly.


Assuntos
Arabidopsis/enzimologia , Interações Hospedeiro-Patógeno , RNA Polimerase Dependente de RNA/metabolismo , Saccharomyces cerevisiae/enzimologia , Tombusvirus/fisiologia , Enzimas de Conjugação de Ubiquitina/metabolismo , Replicação Viral , Arabidopsis/virologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Deleção de Genes , Teste de Complementação Genética , Ligação Proteica , Mapeamento de Interação de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/virologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...